栏目分类:
子分类:
返回
终身学习网用户登录
快速导航关闭
当前搜索
当前分类
子分类
实用工具
热门搜索
终身学习网 > 学历 > 考研 > 考研专业课

考研数学线性代数的思维定势

考研专业课 更新时间:发布时间: 百科书网 趣学号

线性代数解题看似很难,但是其中也有方法和技巧,关键是考生要对此融会贯通。为了让广大考生在线性代数中不断取得进步,考研教育网数学辅导专家向大家传授一下解题的思维定势,考生只要按照思维定势不断锻炼自己解题的方法,长此以往,必将有所收获!

1.题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E.

2.若涉及到A.B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。

3.若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。

4.若要证明一组向量a1,a2,…,as线性无关,先考虑用定义再说。

5.若已知AB=0,则将B的每列作为Ax=0的解来处理再说。

6.若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。

7.若已知A的特征向量ζ0,则先用定义Aζ0=λ0ζ0处理一下再说。

8.若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。

转载请注明:文章转载自 www.051e.com
本文地址:http://www.051e.com/xueli/563697.html
我们一直用心在做
关于我们 文章归档 网站地图 联系我们

版权所有 ©2023-2025 051e.com

ICP备案号:京ICP备12030808号