
题文
[ ]
A.![若,则必有[ ]A.、异号B.、同号C.、中至少有一个为0D.、异号或、中至少有一个为0 若,则必有[ ]A.、异号B.、同号C.、中至少有一个为0D.、异号或、中至少有一个为0](http://www.iotsi.net/file/tupian/20211013/20120711211226464351.png)
![若,则必有[ ]A.、异号B.、同号C.、中至少有一个为0D.、异号或、中至少有一个为0 若,则必有[ ]A.、异号B.、同号C.、中至少有一个为0D.、异号或、中至少有一个为0](http://www.iotsi.net/file/tupian/20211013/20120711211226526358.png)
![若,则必有[ ]A.、异号B.、同号C.、中至少有一个为0D.、异号或、中至少有一个为0 若,则必有[ ]A.、异号B.、同号C.、中至少有一个为0D.、异号或、中至少有一个为0](http://www.iotsi.net/file/tupian/20211013/20120711211226588351.png)
![若,则必有[ ]A.、异号B.、同号C.、中至少有一个为0D.、异号或、中至少有一个为0 若,则必有[ ]A.、异号B.、同号C.、中至少有一个为0D.、异号或、中至少有一个为0](http://www.iotsi.net/file/tupian/20211013/20120711211226651358.png)
![若,则必有[ ]A.、异号B.、同号C.、中至少有一个为0D.、异号或、中至少有一个为0 若,则必有[ ]A.、异号B.、同号C.、中至少有一个为0D.、异号或、中至少有一个为0](http://www.iotsi.net/file/tupian/20211013/20120711211226730351.png)
![若,则必有[ ]A.、异号B.、同号C.、中至少有一个为0D.、异号或、中至少有一个为0 若,则必有[ ]A.、异号B.、同号C.、中至少有一个为0D.、异号或、中至少有一个为0](http://www.iotsi.net/file/tupian/20211013/20120711211226792358.png)
![若,则必有[ ]A.、异号B.、同号C.、中至少有一个为0D.、异号或、中至少有一个为0 若,则必有[ ]A.、异号B.、同号C.、中至少有一个为0D.、异号或、中至少有一个为0](http://www.iotsi.net/file/tupian/20211013/20120711211226854351.png)
![若,则必有[ ]A.、异号B.、同号C.、中至少有一个为0D.、异号或、中至少有一个为0 若,则必有[ ]A.、异号B.、同号C.、中至少有一个为0D.、异号或、中至少有一个为0](http://www.iotsi.net/file/tupian/20211013/20120711211226918358.png)
![若,则必有[ ]A.、异号B.、同号C.、中至少有一个为0D.、异号或、中至少有一个为0 若,则必有[ ]A.、异号B.、同号C.、中至少有一个为0D.、异号或、中至少有一个为0](http://www.iotsi.net/file/tupian/20211013/20120711211226979351.png)
![若,则必有[ ]A.、异号B.、同号C.、中至少有一个为0D.、异号或、中至少有一个为0 若,则必有[ ]A.、异号B.、同号C.、中至少有一个为0D.、异号或、中至少有一个为0](http://www.iotsi.net/file/tupian/20211013/20120711211227041358.png)
题型:未知 难度:其他题型
答案
D
解析
该题暂无解析
考点
据考高分专家说,试题“若,则必有[ ].....”主要考查你对 [绝对值 ]考点的理解。
绝对值
绝对值定义:
在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。
绝对值用“||”来表示。
在数轴上,表示一个数a的点到数b的点之间的距离的值,叫做a-b的绝对值,记作|a-b|。
绝对值的意义:
1、几何的意义:
在数轴上,一个数到原点的距离叫做该数的绝对值.如:5指在数轴上表示数5的点与原点的距离,这个距离是5,所以5的绝对值是5。
2、代数的意义:
非负数(正数和0,)
非负数的绝对值是它本身,非正数的绝对值是它的相反数。
互为相反数的两个数的绝对值相等。
a的绝对值用“|a |”表示.读作“a的绝对值”。
实数a的绝对值永远是非负数,即|a |≥0。
互为相反数的两个数的绝对值相等,即|-a|=|a|。
若a为正数,则满足|x|=a的x有两个值±a,如|x|=3,,则x=±3.
绝对值的有关性质:
①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;
②绝对值等于0的数只有一个,就是0;
③绝对值等于同一个正数的数有两个,这两个数互为相反数;
④互为相反数的两个数的绝对值相等。
绝对值的化简:
绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。
①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:
│a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)
②整数就找到这两个数的相同因数;
③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;
④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。